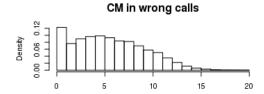
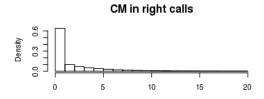
Methods and preliminary results of solid-genotyper

Jin Yu in Fuli's lab Feb 10th 2011

Workflow of solid-genotyper

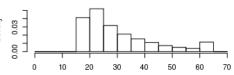
Pre-filter Reads: unique mapped, non-duplicate, # of variant events(INDEL /SNP) < 3

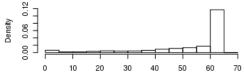



Use Logistic regression model to filter most errors and fix reference bias

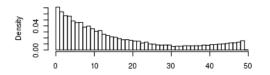
Take advantage of high coverage and homogenous error distribution after solid model, Call genotype using heuristic methods

Characterize SOLiD error model

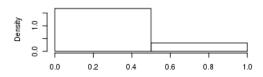



- Using BFAST to map SOLiD reads to a E.coli strand
- Known few true variant sites,
 differences are treated as errors

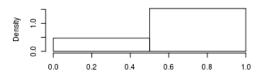
Base Quality Score in wrong calls


Distance to 3' end in right calls

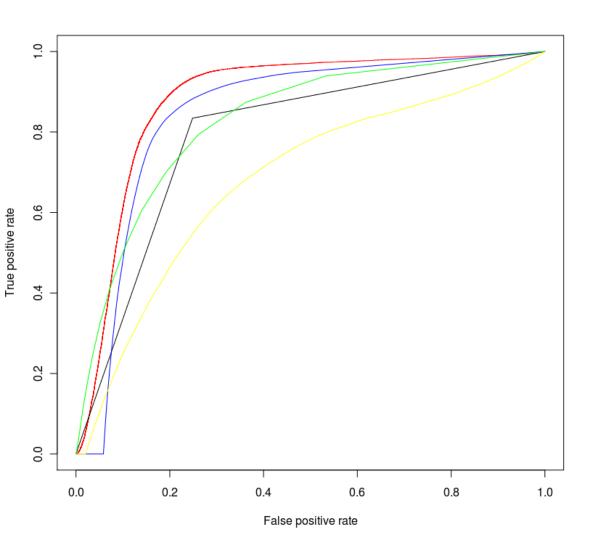
Variables used:


- CM (number of color corrections occurred in this read)
- Raw base quality score
- Distance to 3` end
- NQS (Neighboring Quality Score)

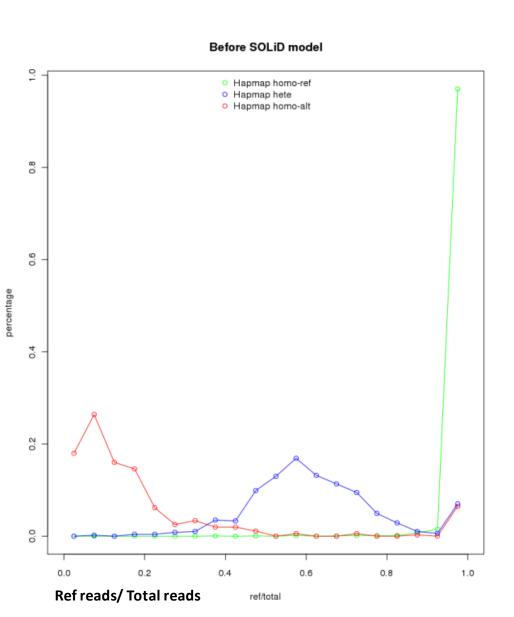
Distance to 3' end in wrong calls



\$100 0000 10 20 30 40 50


NQS in wrong calls

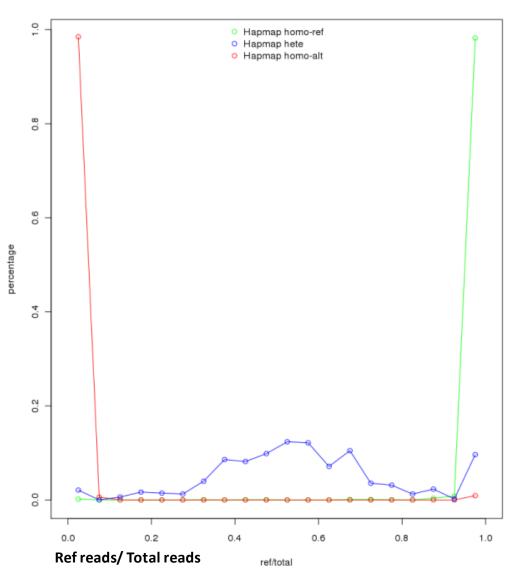
NQS in right calls


Logistics regression on reads level

Performance summary:

- logit predictor has better performance than any single variables
- Filter ~90% errors at the cost of ~15% coverage depth
- Preferable to mark mapping errors (results shown later)

Reference bias in raw alignments


 Cannot survive even in high coverage (average coverage ~60X in this case)

Causes:

- Relative short read length (50bp)
- Special treatment on SOLiD alignment (provided by BFAST)
- Solve the color space reads ambiguity in a way to maximum the mappablity
- always turn ambiguous calls to the reference base

Corrected allele distribution after solid-genotype processing

After SOLiD model

Fix the reference bias at the cost of ~16% coverage depth

- Turn the contradicted calls from reference back to N, account for <1% (GATK recalibration probably will also do it)
- Turn the base at the end of 3` end to N, account for 2%
- Base calls failed logit model, account for ~14%

Heuristics methods to call genotype

- Minimal total effective reads depth to get a confident call (currently use 8)
- Ratio of total effective read depth to call one allele (currently use 0.1)
- Minimal effective read depth to call one allele (currently use 2)

Implementation

- The prototype was implemented in Ruby
- The production version was implemented in C
- Expected performance
 - ~1 hour to call genotypes/SNP of one high coverage exome capture sequencing sample (~60X) using single CPU core