
Methods and preliminary results
of solid-genotyper

Jin Yu in Fuli’s lab

Feb 10th 2011

Workflow of solid-genotyper

Pre-filter Reads: unique mapped, non-duplicate, # of
variant events(INDEL /SNP) < 3

Use Logistic regression model to filter most errors and
fix reference bias

Take advantage of high coverage and homogenous
error distribution after solid model, Call genotype

using heuristic methods

Characterize SOLiD error model

• Methods:
– Using BFAST to map SOLiD reads to

a E.coli strand

– Known few true variant sites,
differences are treated as errors

• Variables used:
– CM (number of color corrections

occurred in this read)

– Raw base quality score

– Distance to 3` end

– NQS (Neighboring Quality Score)

Logistics regression on reads level

Performance summary:

• logit predictor has better
performance than any single
variables

• Filter ~90% errors at the
cost of ~15% coverage depth

• Preferable to mark mapping
errors (results shown later)

Reference bias in raw alignments

• Cannot survive even in high
coverage (average coverage
~60X in this case)

• Causes:

– Relative short read length
(50bp)

– Special treatment on SOLiD
alignment (provided by BFAST)

– Solve the color space reads
ambiguity in a way to maximum
the mappablity

– always turn ambiguous calls to
the reference base

Ref reads/ Total reads

Corrected allele distribution after
solid-genotype processing

• Fix the reference bias at the
cost of ~16% coverage depth
– Turn the contradicted calls

from reference back to N,
account for <1% (GATK
recalibration probably will also
do it)

– Turn the base at the end of 3`
end to N, account for 2%

– Base calls failed logit model,
account for ~14%

Ref reads/ Total reads

Heuristics methods to call genotype

• Minimal total effective reads depth to get a
confident call (currently use 8)

• Ratio of total effective read depth to call one
allele (currently use 0.1)

• Minimal effective read depth to call one allele
(currently use 2)

Implementation

• The prototype was implemented in Ruby

• The production version was implemented in C

• Expected performance

– ~1 hour to call genotypes/SNP of one high
coverage exome capture sequencing sample
(~60X) using single CPU core

